Краткая история почти всего на свете - Брайсон Билл

Книга Краткая история почти всего на свете - Брайсон Билл читать онлайн Справочники, энциклопедии / Энциклопедии бесплатно и без регистрации.

«Краткая история почти всего на свете» Билла Брайсона — самая необычная энциклопедия из всех существующих! И это первая книга, которой была присуждена престижная европейская премия за вклад в развитие мировой науки имени Рене Декарта.

По признанию автора, он старался написать «простую книгу о сложных вещах и показать всему миру, что наука — это интересно!».

Книга уже стала бестселлером в Великобритании и Америке. Только за 2005 год было продано более миллиона экземпляров «Краткой истории». В ряде европейских стран идет речь о том, чтобы заменить старые надоевшие учебники трудом Билла Брайсона.

В книге Брайсона умещается вся Вселенная от момента своего зарождения до сегодняшнего дня, поднимаются самые актуальные и животрепещущие вопросы: вероятность столкновения Земли с метеоритом и последствия подобной катастрофы, темпы развития человечества и его потенциал, природа человека и характер планеты, на которой он живет, а также истории великих и самых невероятных научных открытий.

1 063 0 23:25, 04-05-2019
Краткая история почти всего на свете - Брайсон Билл
04 май 2019
Жанр: Справочники, энциклопедии / Энциклопедии Название: Краткая история почти всего на свете Автор: Брайсон Билл Год : 2007 Страниц : 224
+1 1

Книгу Краткая история почти всего на свете - Брайсон Билл читать онлайн бесплатно - страница 69

1 ... 65 66 67 68 69 70 71 72 73 ... 224

Как бы то ни было, европейцы изо всех сил старались понять странное поведение электрона. Главная проблема, с которой они сталкивались, заключалась в том, что электрон вел себя то как частица, то как волна. Эта невероятная двойственность доводила физиков почти до помешательства. Все следующее десятилетие ученые по всей Европе лихорадочно выдвигали конкурирующие гипотезы. Во Франции принц Луи-Виктор де Бройль, потомок герцогского рода, пришел к заключению, что отдельные аномалии в поведении электронов исчезают, если рассматривать их как волны. Это наблюдение вызвало живой интерес австрийца Эрвина Шредингера, который весьма изощренным способом построил удобную для использования систему, названную волновой механикой. Почти одновременно немецкий физик Вернер Гейзенберг выступил с конкурирующей теорией, названной матричной механикой. Она была до того сложна математически, что вряд ли кто-нибудь в полной мере понимал ее, включая самого Гейзенберга. («Я даже не знаю, что такое матрица», — однажды в отчаянии признался он приятелю.) Но похоже, что он справился с некоторыми проблемами, которые не удалось разрешить Шредингеру.

В результате у физиков появились две теории, основанные на противоречащих друг другу посылках, но дающие одинаковые результаты. Это была неприемлемая ситуация.

Наконец, в 1926 году Гейзенберг нашел знаменитый компромисс, создав новую дисциплину, которая получила известность под названием квантовой механики.136 В ее основе лежал сформулированный Гейзенбергом принцип неопределенности, устанавливающий, что электрон является частицей, но такой, что ее можно описывать в терминах волн. Неопределенность, на которой построена эта теория, состоит в том, что мы можем знать, как движется электрон в пространстве, или знать, где он находится в данный момент, но не можем знать то и другое вместе. Любая попытка определить одно неминуемо нарушает определение другого. Это не вопрос применения более точной аппаратуры, а неотъемлемое свойство Вселенной.

На практике это означает, что нельзя предсказать, где будет находиться электрон в каждый конкретный момент. Можно только рассчитать вероятность его нахождения там. В известном смысле, как это выразил Деннис Овербай, электрон не существует, пока его не замечают. Или чуть иначе: пока его не замечают, следует считать, что электрон находится «одновременно везде и нигде».

Если вас это смущает, можете найти утешение в том, что это смущало и многих физиков. Овербай пишет: «Бор однажды заметил, что тот, кто, впервые услышав о квантовой теории, не возмутился, просто не понял, о чем шла речь». Когда Гейзенберга спросили, как можно представить себе атом, он ответил: «Не пытайтесь».

Так что атом оказался совсем не похожим на то, каким его представляло большинство. Электрон не летает вокруг ядра, как планета вокруг Солнца, а, скорее, имеет бесформенные очертания наподобие облака. «Скорлупа» атома представляет собой не какую-то твердую блестящую оболочку, как порой подталкивают думать некоторые иллюстрации, а просто наиболее удаленные от центра края этих неясно очерченных электронных облаков. Само облако — это, по существу, всего лишь зона статистической вероятности, обозначающая пространство, за пределы которого электрон очень редко выходит. Так что атом, если бы его можно было увидеть, скорее похож на очень нечетко очерченный теннисный мяч, чем на жесткий металлический шар (впрочем, он не очень похож ни на то, ни на другое, и вообще не похож ни на что из когда-либо виденного вами; все-таки мы имеем дело с миром, очень сильно отличающимся от того, что мы наблюдаем вокруг себя).

Казалось, удивительному нет конца. Как выразился Джеймс Трефил,137 ученые впервые столкнулись с «областью Вселенной, которую наши мозги просто не приспособлены понимать». Или, как сказал Фейнман, «в поведении малых тел нет ничего общего с поведением больших». Копнув глубже, физики поняли, что открыли мир, в котором не только электроны могут перескакивать с орбиты на орбиту, не перемещаясь через разделяющее их пространство, но также материя может возникать из ничего «при условии, — по словам Алана Лайтмана138 из Массачусетского технологического института, — что она достаточно быстро исчезает».

Возможно, самой захватывающей из квантовых невероятностей является идея, вытекающая из сформулированного в 1925 году Вольфгангом Паули принципа запрета, согласно которому в определенных парах субатомных частиц, даже разделенных значительными расстояниями, каждая моментально «узнает», что делает другая. Частицы обладают свойством, известным как спин.139 И, согласно квантовой теории, в тот момент, как вы устанавливаете спин одной частицы, ее родственная частица, независимо от того, как далеко она находится, моментально начинает крутиться с той же скоростью в противоположном направлении.


136

Компромисс на самом деле состоял в том, что в 1932 году математик Джон фон Нейман доказал математическую эквивалентность волновой и матричной механики. Несмотря на разное описание частиц, обе теории дают одинаковые выводы об их поведении. При этом одни задачи удобнее решать методами волновой механики, а другие — методами матричной.

137

Джеймс Трефил (James S. Trefil) — американский физик, профессор университета Джорджа Мейсона, автор более чем 30 книг, среди которых энциклопедия «Природа науки. 200 законов мироздания» (русский перевод опубликован на сайте www.elementy.ru).

138

Алан Лайтман (Alan Lightman, 1948) — американский астрофизик и писатель. Наибольшую известность принес ему роман «Сны Эйнштейна» (перевод: ACT, 2001), в каждой из 30 глав которой фигурирует своя нетрадиционная концепция времени.

139

Спин — особый параметр квантовых частиц, который лишь очень отдаленно соответствует вращению макроскопического тела.

1 ... 65 66 67 68 69 70 71 72 73 ... 224
  1. В избранное
Отзывы - 0

Вы уже всё прочитали? Предлагаем вам поделится своим отзывом от прочитанного! Ваш отзыв будет полезен читателям, которые еще только собираются прочитать эту книгу.

Новые отзывы

  1. Гость Дмитрий Гость Дмитрий26 июнь 17:32 Приветствую! Готов купить ваш сайт knigov.ru, в том числе по цене выше рыночной. Меня зовут Дмитрий Купрацевич. В теме сайтов... Невеста Демона - Жданова Светлана
  2. Вова Вова13 ноябрь 11:04 Самая лучшая книжка в мире спасибо это третья часть Я не гость Я не в гость Я не гость... Приключения Тома Сойера - Твен Марк
  3. Иван Иван06 ноябрь 17:34 Очень интересная книга. Это третья часть. Первые две - "Контроль" и "Выбор". Спасибо автору.... Змееед - Суворов Виктор
Все комметарии
Новые книги